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DISTRIBUTED DETECTION OF WEAK SIGNALS FROM
MULTIPLE SENSORS WITH CORRELATED OBSERVATIONS

E. Geraniotis and Y. A. Chau

Department of Electrical Engineering
and Systems Research Center
University of Maryland
College Park, MD 20742

ABSTRACT

We address two problems of distributed detection of a weak signal from dependent obser-
vations. In the first problem, two detectors must decide on the basis of their observations
whether a weak signal is present or not. The observations of the two detectors consist of a
common weak signal disturbed by two independent additive m-dependent or Ai-mixing
noise processes. Fixed-sample-size (block) detection is employed. The decisions are coupled
through a common cost function, which consists of the sum of the error probabilities under the
two hypotheses. In the second problem, the observations.of each individual detector still con-
sist of a common weak signal disturbed by an additive m-dependent or hAi-mixing
noise process, but the noise processes of the two detectors are now correlated. The cost func-
tion has a structure similar to that of the first problem.

In both cases, the detectors employ suboptimal decision tests based on memoryless non-
linearities. Since the signal is weak, large sample sizes are necessary to guaraniee high quality
tests and the asymptotic performance is of interest. To determine the optimal nonlinearities for
the two detectors, we identify new performance measures based on two-dimensional Chemoff
bounds, which correspond to the asymptotic relative efficiency (ARE) used for single-detector
problems, and whose maximization implies the minimization of the aforementioned average
cost function. This optimization results in integral equations whose solution provides the
optimal nonlinearities. Numerical results based on simulation of the performance of the pro-
posed two-sensor schemes are provided to support the analysis.

This research was supported in part by the Office of Naval Research under contract N0O0014-86-K-0013 and in part by the
Systems Rescarch Center at the University of Maryland, College Park, through the National Science Foundation's Engineering
Research Centers Program: NSF CDR 8803012






I. Introduction

Decentralized detection presents several original research problems (see (1] and [2]) be-
cause classical optimal detection theory cannot be applied directly to practical distributed
sensors systems. To make the analysis tractable, the models employed assume independent
data across time and/or sensors, whﬂe in reality, the observations are always dependent.
Indeed, as the locations of the sensors are close geographically in many practical situa-
tions, the noise is correlated a;n(i the observations (signal in noise) are dependent across
detectors. In this paper, the distributed detection of a weak sigﬁa.l from dependent data
is addressed; we consider that two detectors working togeiher have to decide which hy-
pothesis is true Hyp (signal absent) or H; (signal present). The signal is a constant weak
signal in additive noise; we also assume that there is no communication between the two
detectors, although they are coupled through the associated cost function.

A stationary sequence {Y}}2, is said to be ¢;mixing, iffori<1,j<1land bl € FX;

there is a real sequence {¢x}%>, such that

sup |P(B1 N By) — P(B,)P(B.)| < ¢;P(B;)
B2eF;

and
kllono‘o ¢ =0,
where F; is the o-field generated by {Yi}2,,; and F| is the o-field generated by
{Yk}i=l'
Here the model of dependent noise is described by a stationary ¢—mixing dependence
and each detector is assumed to employ a memoryless nonlinearity. Memoryless nonlin-
earities have been successfully applied in single-sensor detection problems (see [3] and [4]).

The performance measure used for this case is the average cost of the decisions of the two



detectors. We use the central limit theorem for dependent random sequences (see [5]) and
develop a two-dimensional Chernoff bound for the error probabilities of the two-sensor de-
tection problem. Then suitable exponents are chosen on the basis of these bounds as the
objective functions for the optimal design of distributed system. We derive the optimal
nonlinearities according to these objective functions.

The remainder of this paper is organized as follows: in Section II, we cite the central
limit theorem f;)r stationary dependent random sequences and deﬁne the expected cost.
Then £he two-dimensional Chernoff bound is derived. In Section III, the case of dependent
data across time— (that is the observations of each sensor are dependent sequences but
they are mutually independent for the different sensors when conditioned on H; (i = 0,1)
being true)- is considered and optimal nonlinearities are derived by solving two decoupled
linear integral equations. In Section IV, we consider a simple case of dependent data
across time and detectors. In Section V, simulation results are presented for both cases
described in Sections III and IV for a first-order Markov dependence model and Gaussian
as well as Rayleigh multivariate joint probability density functions. of the noise process.

Finally, in Section VI conclusions are drawn.



I1. Preliminaries
ITA. The Weak Signal Model and the Central Limit Theorem for Dependent Data

We consider the following observation model of a weak signal for two-detector detection

P . x® = N®

AY . x® =94+ N®, i=1,...,n k=12 (1)

where 9 =M/ /nis £he weak signal, {N;(k),i =1,--.,n;k = 1,2} a stationary ¢—mixing
noise sequence with identical univariate djstributién fr for k = 1,-2, and M a known
positive constant. We attempt an asymptotic analysis for large sampler sizes. The detection
structure employed by each sensor is the the same as that of [3], namely the one with a
memoryless nonlinearity gi(-)(k = 1,2). The test statistic for each sensor has the form
n
Te(X™) = Y (X, k=12 | (2)
i=1
The choice of thresholds is studied in the next two sections. Here, we cite the central limit
theorem for ¢—mixing processes see [5].
Theorem 1: Suppose that {Y;}52, is a stationary ¢—mixing sequence with 322, ¢>J% <

oo and that g is a measurable function satisfying

Eolg(Y1)] = po, varolg(¥1)] < o0

Then the series

o3(g) = varolg ()] + 2 covola(¥:)o(¥41)] )
=1 .

converges absolutely. Furthermore, if o2 > 0,

1
n

(5" (¥;) - npo)
=1

3



converges in distribution to a normal distribution with mean zero and variance o32.

Proof : Set § = g— po, thus Eg[§(Y1)] = 0 and Ep[§?(Y1)] < oo. Then, the above Theorem
follows according to the theorem on page 174 of [5].
We consider memoryless detectors with observations described by (1) which employ

nonlinearities gx, k = 1, 2, that satisfy conditions similar to those presented in [3], i.e.,

Esk[gk] < 00, vargi(gx) < oo (4)
and
o3k (9x) = varge[ge(Y1)] + 2 i covgh{gre(Y1)gk(Yi41)] > 0 (5)
j=1

for all 8, where Egi[gr) = por(gx) = [ gx(z) for(z)dz, for(z) is the marginal pdf of N,-(k)
(and thus of ka) under Ho) and for(z) = for(z — 8) is the marginal pdf of Xi(k) under
Hy. Unde;' these conditions and from Theorem 1 we deduce that, under H; (for i =0, 1),
the test statistics Tk (for k¥ = 1,2) are a.syx.nptotica.lly norn;aﬂy-distributed with means
nuok(gk), nigk(gx) and variances no2,(gr), no2,(gx) for all 6. Furthermore, as n — co they
provide a bivariate normal distribution with the cross correlation functions ngg(g1,92) =
E{(T1 - npo1 (T2 — npio2)) (under Ho) and npg(g1,92) = E[(Tt ~ npor)(T2 — ntg2)] (under
H,), whose forms for the case of g, = g; are derived in Section IV. Throughout this paper
we assume that pgr > por for £ = 1,2 and all 4 > 0.

In addition, the following regularity conditions are assumed ([3, (7)]) for £ = 1,2 and

all >0

OE[Ty]/80]9=0 > 0 (6)

2

o

lim ~2& =1 (7)

n—o o,

. Po
lim ~— =1 8
n—ongo _50 ( )



and

a / Z 9x(z) for(z — 0)dz]/00 = / : dlgr(z) for(z — 6)]/08dx (9)

Therefore, as n — o0, § = M/\/n — 0, and we define

P12 = po = pg

and
2 .2 2
O = Opk = Opy

for k=1,2.
IIB. Performance Measure and the Two-Dimensional Chernoff Bound

We use the following cost function as our performance measure

(
0 ifdi=dy=h

C(dladl’;h) =4 C1. if d1 7“-' d2

C2 lfd1 =d2 ;é h,
where dy,d2,h € {0,1}, and ¢; and c; are non-negative constants. Thus average cost

which couples the decisions of detectors 1 and 2 is

E([C(dy, da; k)] = AEo[C(d1, d2; k)] + (1 — A)Ey[C(dy, do; k)]
= /\{Cl[Po(l, 0) + Po(o, 1)] + 62(1, 1)}

+(1 = A){a[P1(1,0) + P1(0,1)] + ¢2(0,0)}, (10)

where A is the a prior probability of Hy and P. for i = 0,1 are error probabilities under
H;. Thus Py(1,0) = P(Thy > nm, T2 < nnp), Pi(0,1) = P(Th < npy, Ty > nny) for

t= 0,1, Po(].,l) = Po(T1 > nm,Tg > TlT)g) and Pl(0,0) = Pl(Tl S ﬂ?]l,Tg < nng), with

nni(k = 1,2) the threshold employed by sensor k.



Because of the correlation of observations across time and /or sensors, there is no closed-
form expression combining all terms in the average cost. Therefore, we derive a bound
on this cost and use asymptotic analysis for n — oo. First we derive the two-dimensional

Chernoff bound for the general bivariate Gaussian distribution. Define

1 Ty >nam,T2>nnp
Y(fh, 7'2) =
0 otherwise,
where we assume that for k = 1,2 T ~ N(nu, ncr,f) under H; for, i = 0,1, and the pair

(T1,T2) has bivariate Gaussian distribution with the normalized correlation coefficient

P12 = nﬁlg/(\/ﬁdlﬁdz) = ﬁu/(dlag). Then for 3 Z 0, 89 2 0
euﬂmﬂzﬂmy(,h’m) < e Di+aT: (11)
Taking the expectation of (11) under Hy and manipulating it we obtain

Po(Ty > nmy, Tp > nmpp) < e~ 1mm—unm len Ti+aTs)

2 2.2

.
=v2r exp[noésl 4 na;sz + np12010281 82
~s1n(m — po1) — s2n(n2 ~ poz)] . (12)

Following similar steps for the above bound we obtain for t; > 0,¢; > 0,and ¢;; > 0,¢;2 > 0

and ry 20,7502 0

P\(Ty < nm, T < ) < eftmmttanm g le=tTi=tTz]

2.2 2.2
no?s? nols
= V27 exp| ; : ; 2 + np120102515;
+s1n(m — p11) + s2n(n2 — pr2)) (13)

under Hy,

P,-(T1 >nm,Ts < "772) < g~%i1mm +qiznn E'.[er'lTl—qisz]

6



2.2 2.2
noyq; no;5q;
= v2x exp ;q‘l + ;q 2 - np1201024i1Gia

—gan(m — pia) + gizn(nz — pia))
under H;,i=0,1 and

P(Ty < nmy, Ty > 7")2) < etriamm=—rianm E.-[e"“T"""’T’] ‘

2

2,.2 2
no?r?2  no?r?
= V2rex Ly 22 ppiaoy0ariaTi;
2 2

+ran(m — pir) — rion(nz — piz)]

(14)

(15)

under H;,i = 0,1. The four bounds computed in equations (12)-(15) give information

about the performance measure defined in (10). The positive constants sk, tx, rik, gix can

be adjusted for setting the exact form of the bound. Since the weight (c;) of Py(1,1) or

P;(0,0) is greater than that (¢;) of P;(0,1) or P;(1,0) for i = 0,1, we first minimize the

bounds in (12) and (13) with respect to (s;,32) and (¢3,%2). If we minimize (12) with

respect to (3, 32), we have

Po(Tl > nm,Tg > nT)z)

n (m = pa1)? | (m2 ~ po2)?
< 2 —
< V2mrexp{ e pfg)[ e + =

_2p12(m — po1)(m2 — #02)]}
o107

and the corresponding (s1,92) are

5 = (m — po1)oz — (112 — poz)p1201
i (1- P§2)71202

5= (M2 — poz2)or — (M — po1)p1202
: (1= p%,)o2%0,

)

where 0 < p2, < 1. Similarly, if we minimize (13) with respect to (¢;,t;), we have

Pi(Ty < nmy, Ty < npp)

(16)

(17)

(18)



n (b1 = m)? | (p12 — m)?
< -
< V2rexp{ e P%z)[ or T o

_2p12(#11 - 771)(1‘12 - 772)]}
0109

and the corresponding (11,t2) are

i (p11 = m)oz = (12 = M)p1201
(1 - piy)or20,

(#12 — m2)o1 — (11 — M)pP1202
(1 - P%2)02201

ty

Associating the restrictions s, > 0 and t, > 0 for k = 1,2, we have

™ — Kol > N2 — Ho2
(51 02

P12

2 — Ho2 > T — Hot
o)) (3]

P12

and

Hir— T S Hiz — M2
a1 o2

P12

ll’ P— —
12— > H11 ﬂlpl
(0] g1

2

(19)

(20)

(21)

(22)

(23) -

(24)

(25)

Let us now consider (14) and (15). We can minimize (14) with respect to (ri,7i2),

or (15) with respect to (gi1,qi2). However, either minimization wili result in conditions

contradictory to (22)-(23) or (24)-(25), if the constraint rjx > 0or gix > 0for: = 0,1k =

1,2 is to be satisfied. Thus we choose

and

(26)

(27)

(28)



@y = £ ;ma a2 =0, (29)
oy

~which give the following bounds on (14) and (15).

PATy > v, Ty < nm) < mexp[i—(ﬂ;—-zﬂ‘)—l (30)

and

. 3 RS
P(Ty < nmy, T2 > n2) < V27 exp[fz(—n;-;#-zl] (31)
: . 2

Since all parameters si,x, 7k and g for i =0,1and £k = 1,2 are nonnegative, the

constraints to be satisfied by 7, six and oy are presented in (22)-(25) and

Mok < Mk < pak (32)

for £ = 1,2. In the Sections III and IV, we choose suitable thresholds mi(k = 1,2) that
satisfy (22)-(25) and (31).

Finally the form of the bound on the average cost is

E[C(d1, d2; k)]

< ,\{cl{\@?exp[———-——’-‘ﬂ)—] + V27 exp| M]}

203 205
2
n n M2 — i
+c3V2r exp{— 51— )[( ! 011;01) +( 2 02202)
_2p12(m — por)(m2 — #02)]}}
ag102

+(1- A){cl{mexp[————"‘—‘)—] Vo exp[———i‘ﬂ—)—l}
, n 1)? ,)?
oL
_2p12(m — pn)(n2 — #12)]}}

ag102

=By (33)




II1. Dependence of Observations Across Time

In this case, there is no correlation between the two sensors. The two sensors make
their own decisions, according to local observations, and are coupled through a common
average cost function. The optimal test is shown to be the likelihood test with a data-
dependent threshold (see [1]). The computation of the optimal thresholds is complex and
depends greatly on the probability distribution of the observatio;ls. Here we consider a
suboptimal approach by using the Central Limit Theorem and the bounds derived in the
previous section. The (ietefmination of the thresholds is easy to implemént and for largev
sample sizes it only depends on the mean of the nonlinearity under either hypothesis.

Since the correlation coefficient p12 in Section II is zero for this case, the bound of (33)

in Section II from (16), (19), (30) and (31) is

Bd—/\{c1\/2—1Fexp[___(_m__”_°‘_2_]+c V37 exp= (772 #02) ]

2
bea/Br ipl 2 "°‘). )
2

+(1 - /\){61\/2_T'exp[_.g’l_ﬂ2_]+c \/i;exp[ n(n; 512)2]

T2

+02\/2_7?exp[ (i 1#11) + —n(’f;z;gun) 1} (34)

where p1x = por (K = 1,2) for the weak-signal model of Section IIA. Notice that there

are two parts in (34): one is the error probability under Hg, while the other is the error

probability under Hy. Using for each part the fact that as n — oo
(1.16'"'2 + bleﬂb2 ~ 2a1b1e("°’+"b’)72 (35)

with ay, b; positive constants and ag, b, negative constants, we can approximate the bound

10



in (34) by

=3n (M — por)? + (m - 2{102)2]}

8 [ o? o3

By =~ AAexp{

+(1— A)Aexp{ —;’m[(fn _a? a) | (m —ag =), (36)

where A is a known constant. Since the optimal thresholds are hard to compute, we
determine them in a practical way. As mentioned above, th;e exponents in (36) come from
two types of efror probabilities. These grror probabilities depend on the distributions of
the data and cannot be known a priori. To balance these unknown error probabilities so

that we do not bias either hypothesis, we pose the condition

(m~pa)’ | (m— o)’ _ (m—pa) | (m— )’
0,2 + 02 - 02 + 02 (37)
1 2 1 2

for all ok, pex and ox (k = 1,2). One solution of (37) for (7, n2) is

- Mok + Kok

S k=12 (38)

Mk
Notice that constraints (22)-(25) and (32) are satisfied automatically. Thus the bound
-(36) with ni(k = 1,2) given by (38) is

2 2
By ~ Aexp{ 3n[(u91 2“01) + (poz 2#02) 1} (39)
32 o1 b

Minimizing the average cost defined by (39) is equivalent to maximizing the follov?ing

exponent

n(po1(91) — po1(91))* | n(pe2(g2) — poa(92))*
o3 (1) N 03(92)
(ue1(91) — po1(91))/6) . ((1o2(g2) - #02(92))/‘9]2} (40)
o?(g1) N o2(g2)

= M2{[
Recall that the weak signal has the form 8 = M/ /7, hence as n — 00,  — 0 and (40)

becomes proportional to the following performance measure

{0Es(g1]/08)h-0 . {0Felea)/00}2,
g T de) (1)

J(gth) =

11



which corresponds to the ARFE in single-sensor detection (see [3]). Since the decisions of
the two sensors are independent of each other, we can maximize each term in (41) with
respect to gr(k = 1,2). Notice that each term in (41) is invariant under the scaling of its
gk- Using an approach similar to that of [3], we have the following integral equations for
gk(k = 1,2).

00

- f,Ok(z)/fOk(z) = /oo Kk(x7 y)gk(y)dy = gk(x),, k=1,2 (42)

where g1 k() = — f'ox(2)/ for(z) is the locally-optimum detector (see [3]) and the integral
1 Ok

kernel K(z,y) has the form

Ki(z,y) =2 o m (9l2) = (2m + 1) fo(y), k = 1,2. (43)
i=1

For the ¢—mixing noise model m — oo, while for the m—dependent model (see [3]) m is
finite. In the simulation examples of Section V, we set ¢; = 2,¢2 = 1, and A = 1/2, which

corresponds to the criterion of minimizing error probability in single-sensor detection.

12



IV. A Simple Case of Dependent Data Across Time and Sensors

If the weak signal observed by the two sensors passes through the same channel, the
statistics of the observations obtained locally by each sensor can be modeled as being
identical. Therefore, por = poz = o, Por = Hez = ps, and 0y = g2 = o In this
case, we use the same detection structure for Vea.clll sen'sor and thus the same ﬁonlinearity

a()=g2(-)=9g(-)and m =12 = 1. The bound described by (33) has the form

By =){2 27ré1exp[ (T)—#o) ]+\/§;c2exp[ (1+p (77—-#0) ———=1}

12)0
+(1- /\){2\/’2761exp[ (77—#9) H\/Q—;Czexp['ﬁj(q——l%‘]} (44)

Using the balance conditions

—n(n — po)? —n(n — po)?

202 = 202 (45)
—n(n - po)® _ —n(n—pe)’ . (46)
(1+ p1z)o? (14 p12)o?’

we obtain one solution for 7, i.e.,

+ e
n=E_F (47)

Again conditions (22)-(25) and (32) are satisfied with this threshold. Thus, the bound

obtained by employing this threshold is

2
By = Worer exp{ TSI 4 e, ep( ke (19)
12

There are two exponents in (48), namely

n(pe(g) — po(9))* Mz[(#o(g) polg))/91?

Ry(9) =

20%(g) 80%(g)
and
_ npe(g) = po(9))’ _ , 2l(re(g) = po(g))/6]
B9) = 1 pra(a)o(e) 7 401+ puz(9))7%(9) (49)

13



For the same reason as that of Section II, these exponents approach

12 {0Eslg)/ 06100}’

Rl(g) = 802(g)
and
_ a2 1[0E[g]/866=0}> .
Bal9) = M50F b)) (%0

as n — oo and § — 0. The optimal choice of the nonlinearity g(.) that minimizes (48)
is hard to identify. However, it can be shown th;t, for each term R; or R, there is an
optimal solutian for g(.). Therefore, we adopt the following practical solution: we optimize
(maximize) Ry and R, in (50) with respect to g(.) separately, and choose the g(.) that
gives better performance (smaller average cost). For R;, the same integral equation as
(42) of Section III has to be solved for the optimal nonlinearity. For Ry, we can derive the
integral equation satisfled by the optimal nonlinearity. for following similar steps to those
in (3]

Notice that for all  # 0, Ry(g) = R2(g), namely R, is invariant under the scaling of
g. Thus, maximizing Rz with respect to g is equivalent to maximizing ([ gf6)2 and thus
— [ gf§, since — [ gfy = | [ gfg| because of (6), under the constraint that (1 + py2)o? be

equal to a constant. Let go maximize R; under the assumption (6)

go = arg{max A(g)}, (51)

where

#(9)= - [ afs+ M1 + pra(e))o(0) (52)

with Ay being the Lagrange multiplier. Comparing the above H(g) with that in [3], we

note that there is an additional term p;2(g)o?(g) which we have to consider in the course

14



of pursuing optimal g. This term has the following form for ¢~mixing dependence across

Sensors

p12(9)o*(9)

= im 25" 3 Bi(e(el™) - po)(o(=f?) ~ o)l
. =1 j5=1
= Elg=Mg(z®)] + 23" Elg(e{)g(=2,)] - (2m + 12 (53)

j=1
where m is finite for m—dependent noise and m — oo for $—mixing noise.

Let us denote the variation of g as 6g and let Jo(€) = H(g+ €bg). Then the necessary

and sufficient conditions satisfied by go for arbitrary 4g is
Ji,(0)=0 ‘ (54)

and

J",,(0) < 0. ‘ (55)

Referring to equations (12) through (13) of [3] and using (53) above, we have the following

necessary condition for go

7(0)= [ {Hi(2) + 2A1l9(@) folz)

+f S fi(a ol )l oo e (56)
FO0
where
fo(z,y) = (fN§1>,N§=)(z, Y)+ fyw n@ (9, 2))/2 = 2fo(z) fol(y)
and

filz,y) = Ing ey (2, 9) + fya v (92)
f s f ) -4
vy (2 y)+fN§‘>.N,‘i)1(y z) ~ 4fo(z) fo(y)

15



with fo”, N being the joint probability density function of Nl(l) and N J(:_)la.nd ngx)' N

141 J+1

the joint density function of Nl(l) and N J(i)l. From (54) and (56), we deduce an integral

equation similar to the one in [3] for arbitrary ég, namely

3 ileu) + Folm sl =0, (57

j=1

- fi(=)+ alo@o(=) + [ aw)

where Ay, is a scaling factor of g. From (55) we obtain

2AL(1 + p12(69))0*(6g) < 0 (58)

Since py2(.) < 1, (47) (a sufficient condition for go) holds for negative Ay. If we set

AL = —1/2, the integral equation to be solved for go is

- R i)~ [ Kelaso(whiy = ol2), (59)

where gio(z) = — f§(z)/ fo(z) is the locally-optimum detector for this case , and K.(z,y)

is the kernel of this integral equation and has a form

K(z,y)= (fN1(2>/N§1)(y|$) + ngl)/Mn)(ylx))ﬂ —2fo(y)
+§[f~,‘-i,’, I Sy e (vl2)
+ine, v W)+ o v (1) = 4fo(v)]
= fy@ v (9le) = 2fo(y) + 22[]’,\,(,1) No(l2)
=1 #1777

+f~N§:)l/N§x)('ylz) - 2fo(y)] (60)
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V. Simulation Results

In the Examples below, we consider m—dependent noise with m = 100 and sample
size n = 1000. In Figures 1-8, we plot the receiver operating characteristic (ROC) for
-Gaussian (Figureé 1, 2, 5 and 6) and Rayleigh (Figures 3, 4, 7 and 8) noise processes.
In these figures the two types of average cost, £y and E;, are normalized ﬁvith respect
to A and 1 — X respectively. Examples 1 and 2 correspond to independent data across
sensors (Section III), while Examples 3 and 4 correspond to depen(ient data across sensors
(Section IV).
Example 1: Denote by Ni(k) the noise of sensor k at time instant ¢ for k = 1,2;: =

1,---,n. Consider the noise processes characterized by
Nl(k) -~ Vl(k)

N = o NE 41— 2V

where Vi(k) ~ N(0,0%) fori =2,-.-,n; k=1,2 are i.i.d. Gaussian randdm variables, and

V}(l), V,-(z) are independent of each other for all ¢t = 1,---,n. Thus, for k = 1,2

for (N = exp[—(N )2 f208)f(2x0D)/?, i=1,--\n

and
k
7O, )
- 1 CNTRVCN
- 27‘_(1 _pzi)l/za p{ 02(1 )[(N ) + (Nl+l)
2w
where pi = E[N k)N,(_f_)l]/c for j = 4,---,m and k¥ = 1,2. Under hypothesis Ho the

observations X (]) = N; (k ), under hypothesis Hy, X; k) _ g + Ni(k)'. The particular case
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with p; = 0.9, p2 = 0.7, 0y = 3, 02 = 5 is illustrated in Figures 1 and 2 for different
7. In both figures solid lines represent the ROC of the detector using the nonlinearities
gk (k = 1,2) and dot-dash lines represent the one using the likelihood-ratio detector for

i.1.d. data.

E{C}/n E[C]/(1-A) E{CI/A EfCc)/(1-N)
z - _ ] e l T ] T ot - z s T T L T ] L T L) L ‘ L 1/7' T
C ] o ]
15— . C 3
" ’j 1.5 r ]
2 o ] - r i
2 C . 3 C
‘: 1 - g u 1 -
$ . i ]
% [ y < r 3
- E - :
R - B S b -7
s y ] - . ]
o E eI VRSV T NS BT ST T I 2 0 T ST AT SOV SIS e 2
-2 -1 [¢] 1 - -1 0 1 2
Threshold of sensor 2 (n,) 2 Threshold of sensor 2 (n,)
Fig. 1 n=—-8.7 . Fig. 2 my=5.4

Example 2: Let

Z® = JX®Oy + (P, k= 1,2 i= 1,000

)

where X,-(k) is generated by the same model as N,-(k) in Example 1 and Y‘-Uc is described

by

W = w
Yi(k) = Pkyi(.f? +4/1- Piwi(k)v k=1,21=2,--+,n

with W,-(k) ~ N(0,02) and Wi(l), W? independent of each other. Then Z,(k) has a Rayleigh

distribution given by

k
Zg ))2
20}

(k)2
for(2(F) = L ey
T

I k=12
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and a second-order joint pdf given by

f®Oz®, 28
WAl 1 e oy
= — e exp{ -~ L
A=yt Uil o7 T Y
i 7 (k) 7 (k) ‘
.Io[_ﬁ_l___ﬁ}_], i=1,-mk=12

2
(1-p;)o102
Now consider the observations of the two sensors. Under Hg the observations Z-fk) are

Rayleigh distributed. Under H, the observations ka) has the following form

which has a Rician distribution for nonzero 8, and asymptotically a Rayleigh distribution
as § — 0. In fact, these observations correspond- to the envelop;a of a weak signal in
narrowband noise. Although it cannot be modeled directly by an additive noise model, we
use it to test the détection sc};emes derived in Sections III and IV. In this case, the locally-
optimum detector in (42) and (59) has, for k = 1,2, the form g1, £(z) = ~ f'ox(2) /(= for(z))
for Section III and g;,(z) = — f3(z)/(z fo(z)) for Section IV (see [6]) Figures 3 and 4 show
simulation results for this case with parameters (py, p2, 01 and ¢3) being the same as those

in Examplé 1. In these figures solid lines and dot-dash lines have the same meaning as

those in Example 1.

EfC)/A ElCVG-N prea E[C)/(1-n)
2 T T T I T r1 AR - 2 E LN L A (1 AR | L f]‘r J‘ D I (A B I
b ]
1.5 — l =7 15 ‘ 2
- B 7
i f S B
S b I N ]
< - - . - - - - -
> C 4 ¢
< o 4 : ‘ j
L | 4 b
.} >_— —4 5 ‘ ]
0 C -] Ll W S T l Aot L L l Lol L -J | Lj | j J_j ‘| :
Iy R - - o - 1 1.1 1 1 . - l_ 1
200 lbo'rhn:hollgoof un-gg 2 (ny) o *° 200 -150 -100 =50 0 50
Fia 2 pd Threshoid of sensar 2 (n,)
. =—0800
8. L0 Fig. 4 n,=54
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Example 3: Consider again the noise model given in Example 1. Suppose that o, =
02 = 0, p1 = p2 = p and the sequences V,-(l) , V‘-(z) are correlated through the correlation

coefficient py as

pv = E[VOVD)/o?. Thus, for j=1,--,n
EINUNG = dove?

Figures 5 and 6 show simulation results for the case of p = 0.7, ¢ = 5 In Figure 5,
pv = 0.4, while in Figure 6 py = —0.4. Let g and g, denote the nonlinearities obtained
by optimizing the exponents R; and R, respectively. In rthese figures solid lines represent
the ROC of the detector using the nonlinearity g, while dash lines and dot-dash lines

represent the ones using the nonlinearity g. and the locally-optimum detector for i.i.d.

data, respectively.

EJC)/ E[C)/(1-2) EC)/A EfC}/(1-2)
z T ™ \ AJ T T\l ‘Iﬁ' T T T V LR .l J 2 T T 1 LIS B B § l T T T ] T T T =3
r N T ] \ / ]
18 - \ 3 18 - l 3
3 ] . | .
- t ] % 18k ] 9
5 18 = RE ;_\ -~ 3
© L © AN ! Ve "
- - j » - ~N [ - 4
2 14 - X 14 ~ \ P -
o "] oF N ~ \I s h
12 — 12— e 3
C ] o N ]
C PR A T T S AT S ] t I B PUD U S S S ST RS Yt
-10 -5 0 10 ~10 -5 [ 10
Threshold (7n) Threshold (n)
Fig. 5 pye=0.4 Fig. 8 py=-04

Example 4: Consider again the Rayleigh noise processes given in Example 2. Let the
parameters (ox and pi for k = 1,2) be the same as those in Example 3. Furthermore,
define pw = E[Wi(l)W,-(z)]/az and let pw = pv for ¢t = 1,---, n. Figures 7 and 8 show the

results for the cases with pv = pw = 0.4 and pv = pw = 0.9 respectively. In both figures,

20



solid, dash and dot-dash lines have the same meaning as those in Example 3.

£{C)/A : T EIC)/(-N) E[CI/A EfCl/(1-A)
2 1 T O B ) l T 1 1 T I T T T z “' .\ T 1 T T ] L T l LS A
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Fig. 7 pe~04 Fig. 8 p\=0.8
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VI. Conclusions
In this paper we extended the memoryless detection of a known weak signal in depen-

dent noise to the case of distributed two-sensor detection from correlated sensor observa-
tions. The correlation of noise across time and/or sensors is characterized by m-dependent
or (b-mi'xing models. We devised two-dimensional Chernoff bounds on the average error
probability of the two detectors a.na from those obta.ine& performance measures resembling
(although distinctly different) the asymptotic relative efficiency (ARE) for the two-sensor
problem. Oétimization of this performance measure led to linear integral equations whose
solutions provided the optimal memoryless nonlinearities used by the sensors. Qur results
are applicable to both cases of symmetric and asymmetric correlated noise. The simu-
lation results obtained suggest that, regarding the average error probability of the two
sensors, employing memoryless nonlinearities that take into account the correlation in the
samples of the tvx;o detectors,' is always b;atter than using the locally optimal nonlinearity
that ignores the dependence between samples. Takin into consideration the correlation
of observations across sensors improves the performance when the overall correlation is

negative for Gaussian observations or heavy positive for Rayleigh observations.
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